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Abstract 

The forward problem in electrocardiography maps 
epicardial activity to body surface potentials (BSPM), but 
the most detailed bidomain model with a finite element 
numerical solution is computationally expensive. We 
simulated sinus rhythm and atrial fibrillation activity in 
patient-specific 3D atria models (both volumetric and 
bilayer) and compared simplified infinite volume 
conductor method for forward BSMP calculation, against 
a ground truth pseudo-bidomain with finite element 
solution. Simplified models reproduced ECG morphology 
with high fidelity, while amplitudes were systematically 
underestimated due to absence of torso inhomogeneities. 
BSPM dynamics, including vector length and orientation, 
were well preserved, though gradients were exaggerated. 

 
 

1. Introduction 

The forward problem in electrocardiography defines 
the mathematical relationship between the heart’s 
epicardial activations and the resulting body surface 
potential maps (BSPMs). One of its applications is the 
prediction of the standard 12-lead electrocardiogram 
(ECG) from known cardiac electrical sources, enabling 
mechanistic validation of clinical protocols and 
supporting the development of machine learning 
biomarkers [1]. A precise formulation of the forward 
problem is also essential for solving the inverse problem, 
which reconstructs cardiac electrical activity from 
BSPMs and provides a non-invasive alternative to 
intracardiac endocardial mapping used in clinics [2]. 

The bidomain model, solved using the finite element 
method (FEM), is widely regarded as the most 
biophysically detailed framework for calculating cardiac 
electrical activity and its projection to the body surface 
[3]. However, this approach is computationally 
demanding, requiring substantial processing time and 
memory, which limits its feasibility for large-scale in-
silico studies or machine learning applications. To 
overcome these limitations, simplified methods with 

reduced computational complexity have been proposed, 
raising the question of how much anatomical and 
biophysical detail is truly necessary to achieve accurate 
forward simulations. 

Although realistic heart and torso geometries are 
known to be important, the role of secondary structures 
such as lungs, fat, anisotropic skeletal muscle and other 
organs in shaping BSPMs remains debated [4]. While the 
Eikonal model with boundary element method has been 
shown to faithfully approximate bidomain [5], it was 
favoured in previous method comparisons largely because 
these relied primarily on correlation coefficients, which 
may be relatively insensitive measure  that can 
underestimate the accuracy of other approaches [6]. 
Moreover, the Eikonal formulation cannot be used to 
simulate re-entry dynamics in AF, limiting its 
applicability. In a systematic validation study, Bear et al. 
compared in-vivo BSPMs with in-silico maps derived 
from epicardial recordings and reported substantial 
discrepancies when using a homogeneous infinite volume 
conductor torso model. Incorporating inhomogeneous 
torso conductivity reduced, but did not fully resolve, the 
differences [6]. 

In this study, we use patient-specific atrial anatomies 
to evaluate the accuracy of simplified forward models, 
specifically volumetric and bilayer monodomain 3D atrial 
models with infinite volume conductor torsos. The 
respective pseudo-bidomain model serves as the ground 
truth reference. We compare standard 12-lead ECGs and 
BSPMs for both P-waves in sinus rhythm (SR), which 
reflect atrial depolarization, and their pathological 
counterparts, the f-waves, seen in atrial fibrillation (AF). 

 
2. Methods 

2.1. Anatomical model 

Patient-specific volumetric heart and torso models 
were derived from CT scans, complemented by high-
resolution contrast-enhanced cardiac scans [7]. The model 
included the four-chamber heart, lungs, liver and blood 
pools with cardiac valves. Since the original patient 
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model was optimized for defibrillator and ventricular 
simulations, the atria lacked important details such as 
pulmonary veins, the left atrial appendage, and interatrial 
connections, all critical for realistic atrial propagation. To 
address this, we replaced the atria with electrophysiology-
ready meshes [8] using Paraview [9] and Meshtool [10]. 
Utah IV atrial fibrosis maps [11] were projected onto both 
atria, preserving clinically observed spatial distribution 
and fibrotic tissue percentages [12]. A corresponding 
bilayer atrial model was generated using the atrialmtk 
pipeline [13, 14], and all atrial meshes were resampled to 
an average resolution of 340μm for simulations [15]. 

 
2.2. Electrophysiological modeling 

    Atrial myocyte electrophysiology was modelled using 
the Courtemanche et al. cell model [16], tuned to SR and 
AF ranges as described in our previous work [17]. 
Specifically, ionic channel conductivities were adjusted to 
reproduce regional heterogeneity and atrial action 
potential variability observed in AF. Conductivities were 
further optimized to match clinically reported conduction 
velocity ranges. Fibrosis remodelling included discrete 
fibrotic border zones, reduced conduction velocity, and 
electrophysiological remodelling related to cytokine and 
TGF-β1 signalling, as previously described [18]. 

 
2.3. Forward propagation methods 

The bidomain model describes intra- and extracellular 
domains by coupled partial differential equations [3]. 
Since full bidomain simulations with FEM solvers were 
estimated to require ~188 days for this study, we adopted 
the pseudo-bidomain model as the ground truth (PB) [19]. 
This model introduces a thin augmentation layer around 
the tissue, replicating activation and bath-loading effects 
of the full bidomain. For comparison, we implemented 
monodomain propagation models, which reduce 
bidomain under the assumption of equal anisotropy ratios  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

between intra- and extracellular conductivity tensors [20]. 
Forward BSPM calculations were performed with the 
infinite volume conductor method (IVC), assuming the 
heart is in a medium of uniform isotropic conductivity. 
Monodomain simulations were run on both volumetric 
(Vol-IVC) and bilayer (BL-IVC) atrial geometries. 

 
2.4. Simulations 

In-silico experiments were conducted with the PB, 
Vol-IVC and BL-IVC models in both SR and AF (re-
entry) scenarios. For SR, excitation originated at the sinus 
node. AF was initiated by rapid pacing at the left superior 
pulmonary vein sleeve using an S1-S2 protocol with 
computed vulnerable window [21]. 

Simulations were performed with openCARP [22]. To 
ensure steady state, single cell pacing for 50 cycles was 
applied with basic cycle lengths of 500ms (SR) and 
200ms (AF). A fixed timestep of 20μs was used. For BL-
IVC volume-to-surface ratio was set to 1400cm-1 [14]. 
Simulation runtimes were: SR (1000ms): 25min (BL-
IVC), 6h (Vol-IVC), 36h (PB); AF (2500ms): 1h (BL-
IVC), 14h (Vol-IVC), 84h (PB). All runs were executed 
on a 16-core AMD Ryzen 9 7950X CPU. 

 
2.5. Quantitative evaluation of models 

Figure 1 presents simulated atrial activations and 
resulting BSPMs and for both SR and AF, along with the 
corresponding ECG leads II and V1. We evaluated the 
accuracy of simplified forward methods by comparing the 
Vol-IVC and BL-IVC to the ground truth PB. 
Performance was assessed using morphology metrics: 
Pearson Correlation; amplitude metrics: root mean 
squared potential (RMS), relative root mean squared error 
(rRMSE); and BSPMs characteristics at each time point: 
potential difference between extrema (ΔΦ), vector length 
(L) and orientation (θ) between extrema, and average 
potential attenuation adjacent to extrema (Amin/max) [6].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. Simulation results: SR (top) and AF (bottom). Left: BSPMs and atrial activations. Middle: ECG leads II and 

V1 for PB (orange), Vol-IVC (red), BL-IVC (blue). Right: Pearson correlation of Vol-IVC and BL-IVC vs PB. 
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Metrics were analyzed at each time point over 300ms of 
the P-wave in SR and 500ms of the f-wave in AF [6] 
(Figure 2). Mean and standard deviations of the metrics 
for both SR and AF are presented in Tables 1 and 2. 
 

 
Figure 2. Evaluation metrics calculated at each time point 
of ECG for SR (left) and AF (right). PB (orange), Vol-
IVC (red), BL-IVC (blue). 
 
3. Results 

3.1. Sinus rhythm 

In SR, simplified models reproduced ECG morphology 
with high fidelity. Mean Pearson Correlation across the 
12-lead ECG was 0.95±0.08 for Vol-IVC and 0.94±0.10 
for BL-IVC, with values remaining >0.90 throughout the 
P-wave. Except, the lowest performance for aVL lead in 
both models, 0.71 and 0.63 respectively (Figure 1). 

Amplitudes were systematically underestimated: PB 
RMS (0.08±0.04mV) was nearly double that of Vol-IVC 

 
Table 1. Mean ± standard deviation of ECG and BSPM 
metrics (Pearson Corr, RMS [mV], rRMSE, ΔΦ [mV], L 
[mm], θ [°], Amin/max [x103 mV mm-1] computed across all 
time points of SR P-wave. 

 
Metric  PB Vol-IVC BL-IVC 
Corr  - 0.95±0.08 0.94±0.10 
RMS 0.08±0.04 0.05±0.02 0.04±0.02 
rRMSE - 0.46±0.09 0.51±0.05 
ΔΦ 0.22 ± 0.09 0.16±0.07 0.15±0.06 
L 247±52 218±67 217±67 
Θ 47.6±92.9 53.1±94.9 49.3±93.6 
Amin  0.89±0.53 1.39±0.79 1.46±0.82 
Amax  -0.89±0.38 -1.59±0.76 -1.56±0.73 

(0.05±0.02mV) and BL-IVC (0.04±0.02mV). As shown 
in Figure 2, over the P-wave, RMS peaked early during 
atrial depolarization and then declined, with PB 
consistently maintaining higher amplitudes across the 
window. rRMSE remained relatively constant throughout 
cycle (0.46±0.08mV Vol-IVC; 0.51±0.05mV BL-IVC). 
BSPM characteristics followed expected temporal 
dynamics. Both ΔΦ and L peaked with maximal atrial 
activation and decreased as the P-wave terminated.  
PB consistently produced higher values than Vol-IVC and 
BL-IVC. However, PB length of the potential dipole was 
only 12% longer on average. Orientations remained stable 
and comparable. Attenuation near extrema was 
exaggerated in simplified models. 
 
3.2. Atrial fibrillation 

During AF initiated from the left superior pulmonary 
vein, morphology accuracy decreased relative to SR, 
especially for the bilayer model. Vol-IVC maintained a 
mean correlation of 0.91±0.03, while BL-IVC dropped to 
0.81±0.08. Temporal analysis revealed that correlation 
fluctuated with the complexity of wavefront dynamics: 
Vol-IVC maintained values near 0.9, while BL-IVC often 
dipped below 0.8 during periods of wave collision or 
fragmentation (Figure 1). These differences are linked to 
the bilayer model’s mathematical formulation and atrial 
mesh structure, which produces slightly different 
dynamics compared to the volumetric approach [13, 14]. 
As a result, direct comparison is more difficult, and this is 
reflected in the somewhat lower correlations. 

Amplitude discrepancies persisted in AF: PB RMS 
(0.05±0.02mV) was nearly double Vol-IVC and BL-IVC 
(0.02±0.01mV). RMS varied cyclically across the f-wave, 
reflecting reentrant dynamics, but PB consistently 
maintained higher amplitudes. rRMSE increased 
compared to SR (0.66±0.13mV Vol-IVC; 0.73±0.17mV 
BL-IVC), with greater variability during unstable 
propagation, see Figure 2. 

 
Table 2. Mean ± standard deviation of ECG and BSPM 
metrics computed across all time points of AF f-wave. 

 
Metric  PB Vol-IVC BL-IVC 
Corr  - 0.91±0.03 0.81±0.08 
RMS 0.05±0.02 0.02±0.01 0.02±0.01 
rRMSE - 0.66±0.14 0.73±0.17 
ΔΦ 0.14±0.06 0.11±0.06 0.09±0.04 
L 247±61 212±62 217±57 
Θ -40.9±83.6 -45.6±84.6 -41.3±81.1 
Amin  1.31±0.58 2.21±0.97 2.16±1.09 
Amax  -0.99±0.89 -2.04±1.58 -2.18±1.82 

 
BSPM characteristics also displayed dynamic oscillations 
reflecting patterns linked to re-entry in AF. PB showed 
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larger ΔΦ (0.14±0.05mV) and 12% longer vector 
(246±60mm) than simplified models (~0.10mV and 
~215mm), while orientations were similar. Attenuation 
remained consistently stronger in Vol-IVC and BL-IVC 
than in PB. We also investigated a scenario with AF 
initiated from the right superior pulmonary vein. While 
detailed results are not shown here, the outcomes were 
consistent with the left superior pulmonary vein case in 
both mean values and temporal dynamics. 
 
4.  Conclusions 

Simplified models (Vol-IVC and BL-IVC) reproduced 
ECG morphology in SR and AF with high fidelity.  
A systematic underestimation of the ECG amplitudes can 
be due to the fact that the homogeneous IVC lacks the 
low-conductivity lungs included in the ground truth (PB). 
This primarily impacts RMS, rRMSE, and extrema-based 
ECG metrics, but such differences are mitigated in 
practice by normalization in clinical and machine learning 
workflows. Importantly, the overall ECG morphology 
and BSPM dynamics were accurately reproduced by the 
IVC approach at a fraction of the computational cost.  
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