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Abstract

The forward problem in electrocardiography maps
epicardial activity to body surface potentials (BSPM), but
the most detailed bidomain model with a finite element
numerical solution is computationally expensive. We
simulated sinus rhythm and atrial fibrillation activity in
patient-specific 3D atria models (both volumetric and
bilayer) and compared simplified infinite volume
conductor method for forward BSMP calculation, against
a ground truth pseudo-bidomain with finite element
solution. Simplified models reproduced ECG morphology
with high fidelity, while amplitudes were systematically
underestimated due to absence of torso inhomogeneities.
BSPM dynamics, including vector length and orientation,
were well preserved, though gradients were exaggerated.

1. Introduction

The forward problem in electrocardiography defines
the mathematical relationship between the heart’s
epicardial activations and the resulting body surface
potential maps (BSPMs). One of its applications is the
prediction of the standard 12-lead -electrocardiogram
(ECG) from known cardiac electrical sources, enabling
mechanistic validation of clinical protocols and
supporting the development of machine learning
biomarkers [1]. A precise formulation of the forward
problem is also essential for solving the inverse problem,
which reconstructs cardiac electrical activity from
BSPMs and provides a non-invasive alternative to
intracardiac endocardial mapping used in clinics [2].

The bidomain model, solved using the finite element
method (FEM), is widely regarded as the most
biophysically detailed framework for calculating cardiac
electrical activity and its projection to the body surface
[3]. However, this approach 1is computationally
demanding, requiring substantial processing time and
memory, which limits its feasibility for large-scale in-
silico studies or machine learning applications. To
overcome these limitations, simplified methods with
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reduced computational complexity have been proposed,
raising the question of how much anatomical and
biophysical detail is truly necessary to achieve accurate
forward simulations.

Although realistic heart and torso geometries are
known to be important, the role of secondary structures
such as lungs, fat, anisotropic skeletal muscle and other
organs in shaping BSPMs remains debated [4]. While the
Eikonal model with boundary element method has been
shown to faithfully approximate bidomain [5], it was
favoured in previous method comparisons largely because
these relied primarily on correlation coefficients, which
may be relatively insensitive measure that can
underestimate the accuracy of other approaches [6].
Moreover, the Eikonal formulation cannot be used to
simulate re-entry dynamics in AF, limiting its
applicability. In a systematic validation study, Bear et al.
compared in-vivo BSPMs with in-silico maps derived
from epicardial recordings and reported substantial
discrepancies when using a homogeneous infinite volume
conductor torso model. Incorporating inhomogeneous
torso conductivity reduced, but did not fully resolve, the
differences [6].

In this study, we use patient-specific atrial anatomies
to evaluate the accuracy of simplified forward models,
specifically volumetric and bilayer monodomain 3D atrial
models with infinite volume conductor torsos. The
respective pseudo-bidomain model serves as the ground
truth reference. We compare standard 12-lead ECGs and
BSPMs for both P-waves in sinus rhythm (SR), which
reflect atrial depolarization, and their pathological
counterparts, the f-waves, seen in atrial fibrillation (AF).

2. Methods

2.1. Anatomical model

Patient-specific volumetric heart and torso models
were derived from CT scans, complemented by high-
resolution contrast-enhanced cardiac scans [7]. The model
included the four-chamber heart, lungs, liver and blood
pools with cardiac valves. Since the original patient
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model was optimized for defibrillator and ventricular
simulations, the atria lacked important details such as
pulmonary veins, the left atrial appendage, and interatrial
connections, all critical for realistic atrial propagation. To
address this, we replaced the atria with electrophysiology-
ready meshes [8] using Paraview [9] and Meshtool [10].
Utah IV atrial fibrosis maps [11] were projected onto both
atria, preserving clinically observed spatial distribution
and fibrotic tissue percentages [12]. A corresponding
bilayer atrial model was generated using the atrialmtk
pipeline [13, 14], and all atrial meshes were resampled to
an average resolution of 340um for simulations [15].

2.2.  Electrophysiological modeling

Atrial myocyte electrophysiology was modelled using
the Courtemanche et al. cell model [16], tuned to SR and
AF ranges as described in our previous work [17].
Specifically, ionic channel conductivities were adjusted to
reproduce regional heterogeneity and atrial action
potential variability observed in AF. Conductivities were
further optimized to match clinically reported conduction
velocity ranges. Fibrosis remodelling included discrete
fibrotic border zones, reduced conduction velocity, and
electrophysiological remodelling related to cytokine and
TGF-B1 signalling, as previously described [18].

2.3. Forward propagation methods

The bidomain model describes intra- and extracellular
domains by coupled partial differential equations [3].
Since full bidomain simulations with FEM solvers were
estimated to require ~188 days for this study, we adopted
the pseudo-bidomain model as the ground truth (PB) [19].
This model introduces a thin augmentation layer around
the tissue, replicating activation and bath-loading effects
of the full bidomain. For comparison, we implemented
monodomain propagation models, which reduce
bidomain under the assumption of equal anisotropy ratios

between intra- and extracellular conductivity tensors [20].
Forward BSPM calculations were performed with the
infinite volume conductor method (IVC), assuming the
heart is in a medium of uniform isotropic conductivity.
Monodomain simulations were run on both volumetric
(Vol-IVC) and bilayer (BL-IVC) atrial geometries.

2.4. Simulations

In-silico experiments were conducted with the PB,
Vol-IVC and BL-IVC models in both SR and AF (re-
entry) scenarios. For SR, excitation originated at the sinus
node. AF was initiated by rapid pacing at the left superior
pulmonary vein sleeve using an S1-S2 protocol with
computed vulnerable window [21].

Simulations were performed with openCARP [22]. To
ensure steady state, single cell pacing for 50 cycles was
applied with basic cycle lengths of 500ms (SR) and
200ms (AF). A fixed timestep of 20us was used. For BL-
IVC volume-to-surface ratio was set to 1400cm™ [14].
Simulation runtimes were: SR (1000ms): 25min (BL-
IVC), 6h (Vol-IVC), 36h (PB); AF (2500ms): 1h (BL-
IVC), 14h (Vol-IVC), 84h (PB). All runs were executed
on a 16-core AMD Ryzen 9 7950X CPU.

2.5. Quantitative evaluation of models

Figure 1 presents simulated atrial activations and
resulting BSPMs and for both SR and AF, along with the
corresponding ECG leads II and V1. We evaluated the
accuracy of simplified forward methods by comparing the
Vol-IVC and BL-IVC to the ground truth PB.
Performance was assessed using morphology metrics:
Pearson Correlation; amplitude metrics: root mean
squared potential (RMS), relative root mean squared error
(rRMSE); and BSPMs characteristics at each time point:
potential difference between extrema (A®), vector length
(L) and orientation (0) between extrema, and average
potential attenuation adjacent to extrema (Amin/max) [6].
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Figure 1. Simulation results: SR (top) and AF (bottom). Left: BSPMs and atrial activations. Middle: ECG leads II and
V1 for PB (orange), Vol-IVC (red), BL-IVC (blue). Right: Pearson correlation of Vol-IVC and BL-IVC vs PB.
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Metrics were analyzed at each time point over 300ms of
the P-wave in SR and 500ms of the f-wave in AF [6]
(Figure 2). Mean and standard deviations of the metrics
for both SR and AF are presented in Tables 1 and 2.
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Figure 2. Evaluation metrics calculated at each time point
of ECG for SR (left) and AF (right). PB (orange), Vol-
IVC (red), BL-IVC (blue).

3. Results

3.1.  Sinus rhythm

In SR, simplified models reproduced ECG morphology
with high fidelity. Mean Pearson Correlation across the
12-lead ECG was 0.95+0.08 for Vol-IVC and 0.94+0.10
for BL-IVC, with values remaining >0.90 throughout the
P-wave. Except, the lowest performance for aVL lead in
both models, 0.71 and 0.63 respectively (Figure 1).

Amplitudes were systematically underestimated: PB
RMS (0.08+0.04mV) was nearly double that of Vol-IVC

Table 1. Mean + standard deviation of ECG and BSPM
metrics (Pearson Corr, RMS [mV], rRMSE, A® [mV], L
[mm], 0 [°], Aminmax [x10° mV mm!] computed across all
time points of SR P-wave.

Metric  PB Vol-IVC BL-IVC
Corr - 0.95+0.08  0.94+0.10
RMS 0.08+0.04  0.05+0.02  0.04+0.02
rRMSE - 0.46+0.09  0.51+0.05
AD 0.22+0.09 0.16+£0.07  0.15+0.06
L 247+52 218+67 217+67

S 47.6+92.9  53.1£94.9  49.3+93.6
Amin 0.89+0.53 1.39£0.79  1.46+0.82
Amax -0.89+0.38  -1.59+0.76  -1.56+0.73

(0.05+£0.02mV) and BL-IVC (0.04+£0.02mV). As shown
in Figure 2, over the P-wave, RMS peaked early during
atrial depolarization and then declined, with PB
consistently maintaining higher amplitudes across the
window. rRMSE remained relatively constant throughout
cycle (0.46+0.08mV Vol-IVC; 0.51+0.05mV BL-IVC).
BSPM characteristics followed expected temporal
dynamics. Both A® and L peaked with maximal atrial
activation and decreased as the P-wave terminated.
PB consistently produced higher values than Vol-IVC and
BL-IVC. However, PB length of the potential dipole was
only 12% longer on average. Orientations remained stable
and comparable. Attenuation near extrema was
exaggerated in simplified models.

3.2. Atrial fibrillation

During AF initiated from the left superior pulmonary
vein, morphology accuracy decreased relative to SR,
especially for the bilayer model. Vol-IVC maintained a
mean correlation of 0.91+0.03, while BL-IVC dropped to
0.81+0.08. Temporal analysis revealed that correlation
fluctuated with the complexity of wavefront dynamics:
Vol-IVC maintained values near 0.9, while BL-IVC often
dipped below 0.8 during periods of wave collision or
fragmentation (Figure 1). These differences are linked to
the bilayer model’s mathematical formulation and atrial
mesh structure, which produces slightly different
dynamics compared to the volumetric approach [13, 14].
As a result, direct comparison is more difficult, and this is
reflected in the somewhat lower correlations.

Amplitude discrepancies persisted in AF: PB RMS
(0.05+£0.02mV) was nearly double Vol-IVC and BL-IVC
(0.02+0.01mV). RMS varied cyclically across the f-wave,
reflecting reentrant dynamics, but PB consistently
maintained higher amplitudes. rRMSE increased
compared to SR (0.66+0.13mV Vol-IVC; 0.73+£0.17mV
BL-IVC), with greater variability during unstable
propagation, see Figure 2.

Table 2. Mean + standard deviation of ECG and BSPM
metrics computed across all time points of AF f-wave.

Metric  PB Vol-IVC BL-IVC
Corr - 0.91+£0.03  0.81+0.08
RMS 0.05+0.02  0.02+0.01  0.02+0.01
rRMSE - 0.66+0.14  0.73+0.17
AD 0.14+£0.06  0.11£0.06  0.09+0.04
L 247+61 212+62 217+57

S -40.9+83.6  -45.6+84.6 -41.3%£81.1
Amin 1.31+0.58  2.21£0.97  2.16+1.09
Amax -0.99+0.89  -2.04+1.58 -2.18+1.82

BSPM characteristics also displayed dynamic oscillations
reflecting patterns linked to re-entry in AF. PB showed
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larger A® (0.14+0.05mV) and 12% longer vector
(246+60mm) than simplified models (~0.10mV and
~215mm), while orientations were similar. Attenuation
remained consistently stronger in Vol-IVC and BL-IVC
than in PB. We also investigated a scenario with AF
initiated from the right superior pulmonary vein. While
detailed results are not shown here, the outcomes were
consistent with the left superior pulmonary vein case in
both mean values and temporal dynamics.

4. Conclusions

Simplified models (Vol-IVC and BL-IVC) reproduced
ECG morphology in SR and AF with high fidelity.
A systematic underestimation of the ECG amplitudes can
be due to the fact that the homogeneous IVC lacks the
low-conductivity lungs included in the ground truth (PB).
This primarily impacts RMS, rRMSE, and extrema-based
ECG metrics, but such differences are mitigated in
practice by normalization in clinical and machine learning
workflows. Importantly, the overall ECG morphology
and BSPM dynamics were accurately reproduced by the
IVC approach at a fraction of the computational cost.
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